総社市

橋梁·道路付属物等 長寿命化修繕計画

令和6年4月

総社市 建設部地域応援課

目次

•	1.はじめに		•	,	•	•	•	•	•	•	•	1
•	2.計画の目的			,	•	•	•	•	•	•	•	3
•	3.対象施設			,	•	•	•	•	•	•	•	5
•	4.計画期間			,	•	•	•	•	•	•	•	5
•	5.長寿命化修約	善計画の基本方針		,	•		•	•	•	•		5
	基本方針1	定期点検の実施			•	•	•	•	•	•	•	6
	基本方針2	管理区分の設定		,	•			•	•	•		7
	基本方針3	長寿命化及び補修・更新に関する方針		,	•	•		•	•	•	•	8
	基本方針4	日常的な維持管理及び異常時の対応			•	•	•	•	•	•	•	9
	基本方針5	人材育成等		,	•	•	•	•	•	•	•	9
•	6.新技術等の流	舌用方針		,	•	•	•	•	•	•	•	10
•	7.維持管理費用	用の縮減に関する方針		,	•	•	•	•	•	•	•	10
•	8.定期点検の網	吉果		,	•	•	•	•	•	•	•	11
•	9.対策実施状況	प्र		,	•	•	•	•	•	•	•	13
•	10.対策内容	と実施時期		,	•			•	•	•		13
•	11.長寿命化個	多繕計画による効果と対策費用						•	•	•	•	14

1. はじめに

▼ 計画策定の背景

平成25年11月、国において「インフラ長寿命化基本計画」(以下「基本計画」という)が策定されました。

この基本計画は、国民の安全・安心を確保し、中長期的な維持管理・更新等に係るトータルコストの縮減や予算の平準化を図るとともに、維持管理・更新に係る産業(メンテナンス産業)の競争力を確保するための方向性を示すものとして、国や地方公共団体、その他民間企業等が管理するあらゆるインフラを対象に、国や地方公共団体が一丸となってインフラの戦略的な維持管理・更新等を推進することとしています。

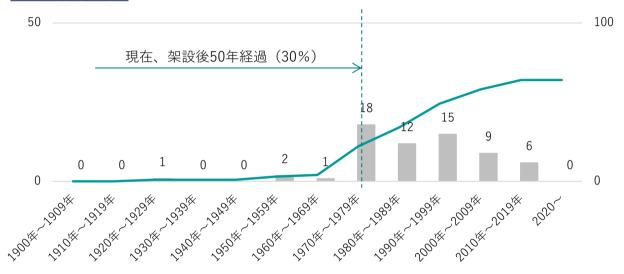
この基本計画に基づき、本市では平成29年3月に「総社市公共施設等総合管理計画」(以下「総合管理計画」という)を策定し、長期的な視点をもって、公共施設等の更新・統廃合・ 長寿命化などを計画的に行い、財政負担の軽減・平準化、公共施設等の最適な配置の実現に取り組んでいます。

本計画は、総合管理計画に基づく、「道路橋梁」「横断歩道橋」「シェッド」「大型カルバート」(以下、道路橋梁、横断歩道橋、シェッド、大型カルバートを総称して「橋梁」という)の戦略的な維持管理・更新等に係る取り組みを具体的に定めたものとなります。

▼ これまでの取り組み

▼ 総社市が管理する橋梁の現状

総社市が管理する橋梁は、以下のとおりです。


<u>道路橋梁</u>	道路付属物等
-------------	--------

・橋長15m以上の橋梁
 ・橋長2m以上15m未満の橋梁
 ・大型カルバート
 ・ 大型カルバート
 3 橋
 ・ 大型カルバート
 3 橋
 3 橋
 3 橋
 3 橋
 3 橋
 3 橋
 3 橋
 3 基

これらの多くは、高度経済成長期以降に集中的に整備され、今後30年で建設後50年を経過する割合が急速に増加し、老朽化による安全性の低下や補修・架替えなどの維持費が増大することが予測されています。

今後、限られた予算や人員の中、従来の「事後保全型の維持管理(※)」を全ての橋梁に行った場合、適切な維持管理を続けることが困難になります。

年度別架設橋梁数

架設後50年経過橋梁数の推移

※上記の2つのグラフは、架設年次が判明している橋長15m以上の64橋(横断歩道橋3橋・大型カルバート2基含む)で集計しています。

2. 計画の目的

今後予想される橋梁の老朽化及び維持管理費の増大に対応するため、従来の「事後保全型の維持管理」から、損傷が軽微なうちに補修を行う「予防保全型の維持管理」に転換し、点検・計画・修繕という橋梁アセットマネジメントの考え方を導入し、道路ネットワークの安全性・信頼性の確保を図るとともに維持管理及び更新費用の縮減と平準化を目的とします。

▼ 橋梁アセットマネジメント

• 橋梁アセットマネジメントとは

橋梁アセットマネジメントとは、橋梁を資産(アセット)としてとらえ、橋梁の状態を客観的に把握・評価し、中長期的な資産の状態を予測するとともに、予算的制約の中でどのような対策をいつどこに行うのが最適であるかを考慮して、計画的かつ効率的に管理(マネジメント)する手法です。

• マネジメントサイクルの構築

データベースを中心としたマネジメントサイクル を構築し、点検結果及び補修履歴をデータベースに 登録・蓄積することで、点検・修繕計画に活用し、 計画的な維持管理を行います。

M

Plan (計画)

・橋梁長寿命化修繕計画の策定

Do (実施)

- 対策の実施
- ・補修履歴等の整理
- Q

Check 点検・評価

- ・点検の実施
- ・橋梁の健全度評価

Action 改善・見直し

- 劣化予測
- ・点検、補修計画の見直し
- ・効果の把握

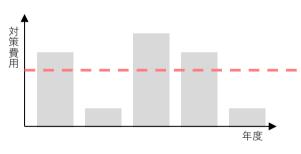
橋梁DB

・橋梁データの蓄積、管理

一事後保全型維持管理一

事後保全型維持管理とは、 損傷が進行した段階で対策を行う保全方法 例えると

「病気の自覚症状が生じてから治療する」


・対策費用の低減

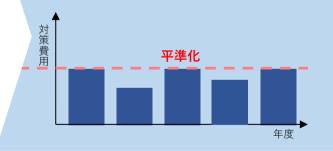
損傷が著しい段階で補修するため、大規模な補修 が必要となり対策費用が高額になる。

・対策費用の平準化

突発的に対策が必要となり、年度によって必要費 用にバラつきが生じる。また、補修費用の予測が つきにくく、補修計画も立てにくい。

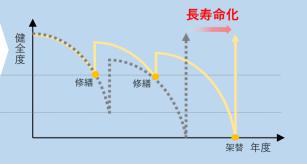
一予防保全型維持管理一

予防保全型維持管理とは、


損傷が軽微な段階で対策を行う保全方法 例えると

「健康診断を定期的に受診して健康体を維持する」

損傷が軽微な段階で補修するため、簡易な補修と なり対策費用を抑えることができる。


補修時期や補修費用をあらかじめ把握することで 計画的な補修実施と予算確保が可能となり、年度 の必要費用を平準化できる。

・長寿命化

著しい損傷が発覚するまで対策を行わないため、 短命化の恐れがある。

健全度 修繕 架替 年度 致命的な損傷に至る前に予防的に対策を行うこと で長寿命化を図る事が可能となる。

3. 対象施設

本計画の対象施設は、市が管理する橋長2m以上の道路橋梁及び道路付属物等とします。

道路橋梁	812 橋	道路付属物等	
• コンクリート橋	695 橋	横断歩道橋	3 橋
● 鋼橋	51 橋	・シェッド	2 基
●混合橋	7 橋	• 大型カルバート	3 基
● その他(石橋・木橋等)	59 橋		

4. 計画期間

計画期間は、令和6年度から令和10年度までの5年間とします。

ただし、橋梁の状態は経年劣化や疲労等によって時々刻々と変化するため、点検結果等を踏まえて、適宜計画を更新するものとします。

5. 長寿命化修繕計画の基本方針

本計画の基本方針は、下記の5点とします。

基本方針①	定期点検の実施
	対象施設の健全度を把握するため、定期点検を実施します。
基本方針②	管理区分の設定
	効果的且つ持続可能な維持管理を行うため管理区分を設定します。
基本方針 ③	長寿命化及び補修・更新に関する方針
	管理区分毎に管理水準を設定し、対策を図ります。
基本方針 ④	日常的な維持管理及び異常時の対応
基本方針⑤	人材育成等

基本方針①

定期点検の実施

橋梁の健全度を把握するため、道路法施行規則第4条5の6に則り、定期点検を5年に1回 の頻度で近接目視を基本に実施します。

道路法施行規則 第4条5の6

トンネル、橋その他道路を構成する施設若しくは工作物又は道路の附属物のうち、損傷、腐食その他の劣化その他の 異状が生じた場合に道路の構造又は交通に大きな支障を及ぼすおそれがあるもの(以下この条において「トンネル 等」という。)の点検は、トンネル等の点検を適正に行うために必要な知識及び技能を有する者が行うこととし、近 接目視により、五年に一回の頻度で行うことを基本とすること。

健全度の評価方法

岡山県道路橋梁点検マニュアル(案)に基づき、橋梁を構成する部材の健全度を損傷の種類 毎に評価し、部材の重要性や損傷の進行状況、環境状況など様々な要因を総合的に勘案し、 「橋梁」の健全度を評価します。

近接目視を基本とし、損傷個所を下記の損傷区分で評価する。

損傷個所の評価

b:ほぼ健全 c:損傷度小 d:損傷度中 e:損傷度大 ○橋脚1本のひ

損傷箇所の評価をもとに部材を下記の対策区分で評価する。

部材毎の評価

A:補修不要

a:健全

B: 経過観察

C:予防的 補修実施 E:早期 補修実施

部材の評価をもとに橋梁全体を下記の対策区分で評価する。

橋梁全体の評価

A:補修不要

B: 経過観察

C:予防的 補修実施 M:維持的 補修実

E:早期 補修実施

橋梁全体の対策区分から全国統一評価基準の判定区分で評価する。

I:健全

Ⅱ: 予防保全段階

Ⅲ:早期措置段階

Ⅳ:緊急処置段階

判定区分で評価

道路橋の機能に支障が 生じていない状態

道路橋の機能に支障が 生じていないが、予防保 全の観点から措置を講ず ることが望ましい状態

・道路橋の機能に障害が 生じる可能性があり、早 期に措置を講ずべき状態

・道路橋の機能に支障が 生じている、又は生じる可能性が著しく高く、緊急に 措置を講ずべき状態

限られた予算・人員で最善の維持管理を行うため、対象施設を重要度に応じた管理区分に分け、管理すべき水準をそれぞれで定義することで、効果的かつ持続可能な維持管理を行います。

管理区分 1

予防保全型維持管理を実施し、高い健全度の維持と長寿命化を図る。

対象:通行規制による社会的影響の大きい橋梁、施工規模が大きい橋梁

通行規制による社会的影響の大きい橋

	緊急輸送道路.	上の橋梁
--	---------	------

跨線・跨道橋

2 橋 6 橋

• 横断歩道橋

3 橋

・シェッド

2 基

大型カルバート

3 基

施工規模が大きい橋梁

● 橋長50m以上の橋梁

4 橋

管理区分2

事後保全型維持管理を実施し、社会的影響の無い範囲で健全度を維持する。

対象:比較的構造が単純な橋梁

比較的構造が単純な橋梁

・ 橋長50m未満の橋梁

741 橋

管理区分3

架替又は撤去を前提とし、対策時期まで最低限の維持管理を行う。

対象: 架替えた方が経済的優位となる橋梁

架替えた方が経済的優位となる橋梁

石橋・木橋

59 橋

基本方針③

管理区分毎に管理水準を設定し、健全度の評価に基づき、道路の効率的な維持及び修繕が図られるよう対策を行います。

▼ 管理水準

管理区分1 予防保全型維持管理を実施し、高い健全度の維持と長寿命化を図る。

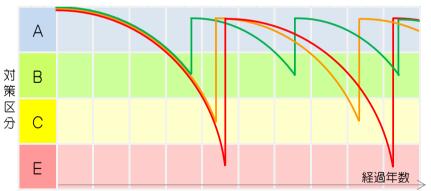
管理区分2 事後保全型維持管理を実施し、社会的影響の無い範囲で健全度を維持する。

<mark>管理区分3</mark> 架替又は撤去を前提とし、対策時期まで最低限の維持管理を行う。

▼ 管理水準の考え方

下の図は、対策区分B・C・Eで補修を実施した場合のイメージ図です。

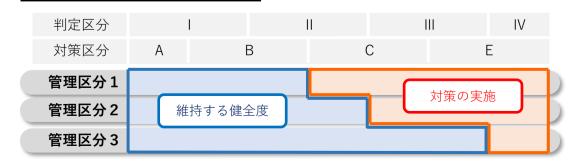
対策区分Bで補修した場合、補修回数が多くなり、総補修費も高額になります。


対策区分 E で補修した場合、事後保全的な補修であり、1回当りの補修費が高く、総工事費も高額になります。

予算縮小の観点から対策区分Cでの補修が最適と考えられます。しかしながら、限られた予算及び 人員の中では全ての橋梁を対策区分Cで補修することは現実的でありません。

管理区分1に分類する重要な橋梁または規模が大きく対策区分CとEで補修した場合の補修費の差が大きい橋梁を優先的に対策区分Cで補修し、高い健全度の維持と長寿命化を図ります。

管理区分2の橋梁は、道路機能の維持を目的に対策を実施します。


<u>管理区分3</u>の橋梁は、架替又は撤去を予定しており、状態を回復させる修繕は基本的に行わず対策 時期まで最低限の維持管理を行います。

補修時期	補修費	補修回数	総補修費
対策区分Bで補修	10百万円	30	30百万円
対策区分Cで補修	12百万円	20	24百万円
対策区分Eで補修	20百万円	20	40百万円

補修サイクルのイメージ

対策実施時期

▼ 優先順位の考え方

橋梁の補修優先度は、損傷状況を優先的に考慮しますが、同程度の損傷状況の場合、橋梁の 重要度、損傷要因、損傷部材の種類などを総合的に勘案し決定します。

優先度評価指標	評価内容
	● 跨線、跨道橋など第3者へ影響のある橋梁を優先
橋梁の重要度	• 緊急輸送道路上にある橋梁を優先
	● 橋長の長い橋梁を優先
損傷要因	● 交通量の多い橋梁を優先
担肠安凸	● 塩害地域にある橋梁を優先
損傷部材	• 主桁や床板等の主部材に損傷がある橋梁を優先

基本方針 ④

日常的な維持管理及び異常時の対応

橋梁を良好な状態に保つため、日常的な維持管理として、道路パトロール、清掃などを行います。

また、地震等の災害時や橋梁部材に異常が発見された場合には、異常時点検を実施して橋梁の安全性を確認し適切に対応します。

基本方針⑤

人材育成等

適切な点検や補修などの維持管理を実施するために、橋梁に関する研修会等を通じて、職員の 点検・補修能力の向上を図ります。

<u>橋梁点検実習状況</u>

6. 新技術等の活用方針

▼ 新技術等の活用方針《道路橋梁・横断歩道橋・大型カルバート・シェッド 共通》

点検、補修設計、補修工事の全ての事業において、従来技術に比べ維持管理費用の縮減(定期点検の効率化、修繕等の措置の省力化等)が見込まれる場合は積極的に新技術等を活用します。

▼ 新技術等の活用に関する目標《道路橋梁・横断歩道橋・大型カルバート・シェッド 共通》

令和10年度までに道路橋梁・横断歩道橋・大型カルバート・シェッドを含む管理施設の10施設で新技術等を活用することを目標とし、約100万円の費用の縮減や事業の効率化を図ります。

7.維持管理費用の縮減に関する方針

▼ 維持管理費用の縮減に関する方針《道路橋梁・横断歩道橋・大型カルバート・シェッド 共通》

定期点検により損傷の早期把握及び計画的な補修を行うことで、大規模補修や更新を回避して費用の縮減を図ります。また、新技術の積極的な活用と社会経済情勢や、橋梁の利用状況及び地元住民の方々の意見等を踏まえ、迂回路が存在する道路橋梁及び横断歩道橋については、集約化・撤去を検討し、維持管理費用の縮減を目指します。

大型カルバート及びシェッドについては、利用頻度が高く代替施設も無いことから必要性が 高いと判断されるため、現状では集約化・撤去は困難であると考えています。

▼ 維持管理費用の縮減に関する目標《道路橋梁・横断歩道橋 共通》

令和10年度までに迂回路が存在する道路橋梁及び横断歩道橋のうち、2橋の集約化・撤去を目標とし、約400万円の将来の維持管理費用の縮減を図ります。

8. 定期点検の結果

2019年度から2023年度(2巡目)の点検結果は、以下のとおりでした。 判定区分Ⅲ・IVは損傷有として損傷率を表示しています。

▼ 管理区分別

			II III IV			IV			
管理区分	Α		В	(<u>C</u>		E	損傷率	損傷率グラフ
管理区分1	2	0	17	1	0	0	0	5%	5.0%
管理区分2	510	55	104	48	22	2	0	3%	3.2%
管理区分3	37	6	6	6	4	0	0	7%	6,3%

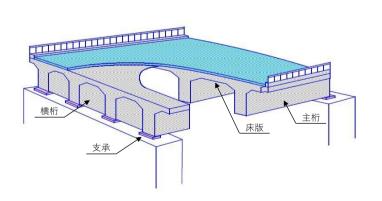
0%

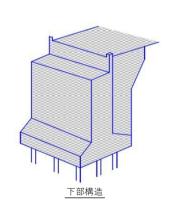
50%

100%

※管理区分1はC-Ⅱ・Ⅲ・Ⅳを損傷有としています。

▼ 経過年数別


経過年数		П	Ш	IV	損傷率	損	傷率グラフ
● 橋長15 m以上	_						
0~9年	2	1	0	0	0%	0.0%	
10~19年	4	1	0	0	0%	0.0%	
20~29年	3	9	0	0	0%	0.0%	
30~39年	9	7	0	0	0%	0.0%	
40~49年	4	5	0	0	0%	0.0%	
50~59年	4	6	6	0	38%	37.5%	5
60~69年	0	0	0	0	-	0.0%	
70~79年	0	2	0	0	0%	0.0%	
80~89年	0	0	0	0	-	0.0%	
90~99年	0	0	1	0	100%		100.0%
不明	0	0	0	0	-	0.0%	
● <u>橋長15m未満</u>	<u> </u>						
0~9年	2	1	0	0	0%	0.0%	
10~19年	0	0	0	0	-	0.0%	
20~29年	4	1	0	0	0%	0,0%	
30~39年	0	1	0	0	0%	0.0%	
40~49年	1	0	0	0	0%	0.0%	
50~59年	1	2	0	0	0%	0.0%	
60~69年	0	0	0	0	-	0.0%	
70~79年	0	0	0	0	-	0.0%	
80~89年	0	0	0	0	-	0.0%	
90~99年	0	0	0	0	-	0.0%	
不明	576	146	21	0	3%	2.8%	
						0%	50% 100%


▼ 橋種別

橋種	I	П	Ш	IV	損傷率	損傷率グラフ	
道路橋梁							
コンクリート橋	556	125	14	0	2%	2.0%	
鋼橋	10	32	9	0	18%	17.6%	
混合橋	1	5	1	0	14%	14.3%	
石橋・木橋等	43	12	4	0	7%	6 .3%	
● 道路付属物等							
横断歩道橋	0	3	0	0	0%	0.0%	
シェッド	0	2	0	0	0%	0.0%	
大型カルバート	0	3	0	0	0%	0.0%	
						0% 50%	100%

▼ 部材別

部材	1	Ш	III	IV	損傷率	損傷率グラフ
主桁	233	52	8	2	3%	3.4%
横桁	30	16	1	0	2%	2.1%
床版	858	159	21	2	2%	2,2%
下部構造	720	84	11	0	1%	1.3%
支承部	630	27	1	0	0%	0.2%

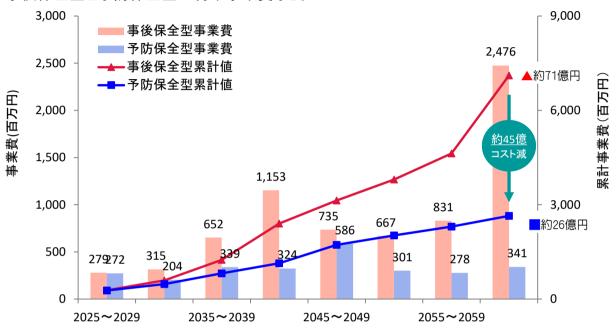
30%

0%

9. 対策実施状況

長寿命化修繕計画を策定した2016年度から現在に至るまでの補修実績は、以下のとおりです。

年度	補修件数	主な補修実施橋梁		,			
2016	2	市場屋敷線1号橋	1巡目点検(2	014~2018年度	€)		
2017	4	中央本線1号橋		65	6		II IIIV 137 25 0
2018	6	下向橋、新大黒橋	0% 2	20% 40	% 60%	80%	100%
2019	7	廣谷橋、宮地上橋					
2020	9	土井橋、境橋、玉買沖上橋	2巡目点検(2	019~2023年度)		
2021	2	豪渓橋、5031道1号橋		I		П	
2022	5	3 4 8 5 道 1 号橋		610		182	² 28 ⁰
2023	2	峰渡橋、3005道1号橋	— 0% Z	20% 40	% 60%	6 80%	100%
合計	37						


■10.対策内容と実施期間

次回の点検や対策内容、実施時期等については、別紙「橋梁・道路付属物等 点検・修繕計画 一覧表」のとおりです。

11. 長寿命化計画による効果と対策費用

2巡目点検(2019~2023年度)の点検結果を基に,今後40年間の対策費用をシミュレーションした結果、単年度平均で約1千5百万円の対策費用が必要となりますが、従来の事後保全型の維持管理と比較すると、約45億円のコスト縮減が見込まれるとともに、一時的なコスト増も抑制され必要予算の平準化が可能となります。

事後保全型と予防保全型の将来事業費予測

※ 上記のグラフは、現時点での点検結果・標準的な工法・単価などに基づき試算したものです。そのため、今後の点検結果や補修状況等により変化するものであり、担保されたものではありません。